Correcting Inversion and Synchronization Errors Using Binary Neural Networks
نویسنده
چکیده
A binary neural network is applied to the problem of error correction. The neural network will be implemented to correct both inversion and synchronization errors. Neural networks have been used before to correct inversion and synchronization errors, however, additional redundancy in the form of markers or watermarks were added to aid synchronization recovery. It is shown in this paper that it is not necessary to add markers or watermarks to the transmitted sequence in order to correct synchronization errors. A combination of inversion and synchronization errors can also be corrected. A moment balanced Low Density Parity Check (LDPC) code will be used as a codebook.
منابع مشابه
Linear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملApplying Multiple Complementary Neural Networks to Solve Multiclass Classification Problem
In this paper, a multiclass classification problem is solved using multiple complementary neural networks. Two techniques are applied to multiple complementary neural networks which are one-against-all and error correcting output codes. We experiment our proposed techniques using an extremely imbalance data set named glass from the UCI machine learning repository. It is found that the combinati...
متن کاملUsing neural networks to predict road roughness
When a vehicle travels on a road, different parts of vehicle vibrate because of road roughness. This paper proposes a method to predict road roughness based on vertical acceleration using neural networks. To this end, first, the suspension system and road roughness are expressed mathematically. Then, the suspension system model will identified using neural networks. The results of this step sho...
متن کاملPrediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine
Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...
متن کاملArtificial Neural Networks (ANN) for the simultaneous spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid
Simultaneous spectrophotometric estimation of Fluoxetine and Sertraline in tablets were performed using UV–Vis spectroscopic and Artificial Neural Networks (ANN). Absorption spectra of two components were recorded in 200–300 (nm) wavelengths region with an interval of 1 nm. The calibration models were thoroughly evaluated at several concentration levels using the spectra of synthetic binary mix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012